Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Challenging in laser based spectroscopy for nuclear engineering

Wakaida, Ikuo; Oba, Hironori; Akaoka, Katsuaki; Miyabe, Masabumi; Oba, Masaki; Ito, Chikara; Saeki, Morihisa; Kato, Masaaki

no journal, , 

In nuclear engineering, especially for the decommissioning of severe accident atomic power plant, development of quick, easy, non-contact, no-preparation, direct, remote, onsite and in-situ analysis of nuclear fuel materials which has very complex and large amount of optical emission lines will be indispensable. In these R&D, it may be important how we realize high sensitivity and high resolution spectroscopy and perform the identification of the specific element among a large number of emission spectra. Various kind of technique, such as Double-pulse LIBS and Microwave assisted LIBS for multiply the emission intensity, high resolution LIBS by ultra-high resolution spectrometer or Laser Ablation Resonance Absorption Spectroscopy for isotope analysis, Ultra-thin Liquid flow LIBS for liquid phase application and LIBS based on radiation resistant optical fiber for onsite/in-situ monitoring of melt downed nuclear fuel debris, will have been under investigation. Japan Atomic Energy Agency has opened the new research center "Collaborative Laboratories for Advanced Decommissioning Science", and laser based spectroscopy will be restarted as one of the basic projects.

Oral presentation

Elemental analysis of solid samples under water by fiber-coupled laser induced breakdown spectroscopy

Oba, Hironori; Saeki, Morihisa; Ito, Chikara; Takano, Masahide; Akaoka, Katsuaki; Thornton, B.*; Sakka, Tetsuo*; Wakaida, Ikuo

no journal, , 

To inspect the post-accident nuclear core reactor of the TEPCO Fukushima Daiichi Nuclear Power Plants, a transportable fiber-coupled laser-induced breakdown spectroscopy (LIBS) instrument has been employed. In the post-accident nuclear core reactor, melted fuel core, fuel cladding and construction material might drop in the lower part of the reactor, which filled with seawater that was injected for urgent cooling. The major components of the debris material are assumed to be uranium oxide (UO$$_{2}$$, fuel core), zirconium alloy (Zry, fuel cladding), stainless steel (Fe, construction material) and boron carbide (B$$_{4}$$C, critical control material). In this presentation, we report underwater analysis of simulated corium debris, (U,Zr)O$$_{2}$$, and B$$_{4}$$C by fiber-coupled LIBS instrument. The experiments were carried out using near-infrared wavelength region for pulsed-lasers and plasma emission measurements, which shows no attenuation in the optical transmittance of the fiber optic cable by intense radiation dose. We determined candidates of the emission lines of Zr, U, Fe and B (BO) that are applicable to analyses of the debris without mutual interference.

2 (Records 1-2 displayed on this page)
  • 1